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SUMMARY

The dynamical equations for the energy in a turbulent channel �ow have been developed by using
the Karhunen-Lo�eve modes to represent the velocity �eld. The energy balance equations show that all
the energy in the �ow originates from the applied pressure gradient acting on the mean �ow. Energy
redistribution occurs through triad interactions, which is basic to understanding the dynamics. Each triad
interaction determines the rate of energy transport between source and sink modes via a catalyst mode.
The importance of the proposed method stems from the fact that it can be used to determine both
the rate of energy transport between modes as well as the direction of energy �ow. The e�ectiveness
of the method in determining the mechanisms by which the turbulence sustains itself is demonstrated
by performing a detailed analysis of triad interactions occurring during a turbulent burst in a minimal
channel �ow. The impact on �ow modi�cation is discussed. Copyright ? 2002 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Wall-bounded turbulent �ows are of obvious technological signi�cance and include very
basic ones such as turbulent boundary layer �ows over plane surfaces, �ows in conduits
(pipes, channels), as well as �ows over surfaces possessing complex geometries. A large
body of experimental work has revealed that although these �ows vary randomly in time and
space, they appear to possess quasi-deterministic coherent structures [1, 2]. Recently, direct
simulations of these �ows at low Reynolds numbers have been used to more rigorously
de�ne and understand the nature of these coherent structures [3–5]. Other related work has
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been motivated by the goal of generating a low-order dynamical system for wall bounded
turbulence [6–8].
Previously Webber et al. [9], hereafter referred to as WHS, investigated a fully developed

turbulent channel �ow using the Karhunen-Lo�eve (KL) methodology to explore its dynamics.
In that work the KL method, which will be described brie�y below, was applied to the so-
called minimal channel �ow [10] whose dynamics are known to be somewhat simpler, but
quite representative of wall bounded turbulence obtained in larger domains. In the previous
work (WHS) it was shown that it was useful to interpret each KL mode as having physical
signi�cance. In particular, it was found useful to divide the modes into those which represent
the mean �ow (net �ux modes) and those which can be associated with dynamical structures
which exchange energy with the mean, referred to as roll modes and propagating modes.
During a turbulent burst, it was found that the roll and propagating modes gained energy
in a particular temporal order. However, it was evident that the KL analysis alone could
not determine the direction of energy �ow between modes through non-linear interactions.
However, since drag increases during a turbulent burst, knowledge of which modes give up
energy to other modes may be of importance in devising strategies to inhibit such interactions
and thereby reduce drag. In addition, since the KL modes themselves satisfy incompressibility
and the boundary conditions, the equations describing energy transport between modes can be
considerably simpli�ed. This leads to a streamlining of the numerical procedures and may also
lead to greater insight into the �ow dynamics. Our principal aim in this work is to describe
the formulation of the energy transport problem using KL modes and to illustrate its utility
by applying it to turbulent channel �ow.
The phenomenology associated with wall bounded turbulence, such as the ejection-burst-

sweep cycle, is described in WHS and will not be described further here. On the other hand,
it is useful in the context of this work, to think of the problem in global terms as an input–
output problem. In particular, for a given driving pressure gradient there will be a resultant
steady-state mass �ux. In turbulent channel �ow driven by a predetermined constant pressure
gradient, the mass �ux is much reduced compared to that of a laminar �ow for the same
pressure gradient. Thus, the turbulence is e�ectively extracting energy from the mean �ow in
order to maintain itself. It will be shown below that formulating the energy transport problem
in terms of the KL modes can shed some light on the non-linear energy transport process
which maintains the turbulence and ultimately results in drag.

2. TURBULENCE SIMULATION AND KL PROCEDURE

2.1. Turbulence simulation

We simulate the �ow in a channel driven by a uniform pressure gradient by solving the
incompressible Navier–Stokes equations which in normalized form are given by

@U
@t
=−U ·∇U −∇p+

1
R�

∇2U+ 1e1 (1)

∇ ·U=0 (2)
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together with the no slip boundary conditions given by

U=0; x2 = ± 1 (3)

where U(x; t) is the velocity, and p is the pressure. The Reynolds number is given by
R�= u�h=�, where � is the kinematic viscosity, h is the channel half-width, and the friction
velocity u�=

√
�w=�=

√
kh=�, where �w is the viscous shear stress at one wall, k is the

constant driving pressure gradient, and � is the density. In the equations above, velocity,
pressure, length, and time are made non-dimensional by u�, �u2� , h, and h=u�, respectively.
The applied pressure gradient is constant and in this normalization is given by 1e1 where e1
is the unit vector in the streamwise direction.
We use the notation (x1; x2; x3) to denote the streamwise, wall normal, and spanwise co-

ordinates, respectively. The superscript (+) is taken to imply a velocity, length, or time
normalized by u�, �=u�, and �=u2� respectively. The �ow is assumed to be periodic in the x1 and
x3 directions with corresponding domain lengths of L1 =�h and L3 = 0:3×�h. The resolution
was 129× 48× 24 in the wall normal, streamwise and spanwise directions, respectively. The
friction Reynolds number R� was set to 135.5 which was so chosen as to maintain a bulk
Reynolds number, Reb = 3

2 〈Ub〉h=�=3000, as determined from the results of Dean [11] where
the bulk velocity Ub is given by

Ub(t)=
1
A

∫
A
U(x; t) dA (4)

where A=2L3h is the cross-sectional area and 〈 〉 represents time averaging. Further details
about the numerical simulation can be found elsewhere [12, 13].
The kinetic energy of the �ow is de�ned by

E(t)=
1
2V

∫
V
U(x; t) ·U(x; t) dx (5)

so that the rate of change of the energy in the system is given by

d
dt

E(t)=
1
V

∫
V
U(x; t) · @

@t
U(x; t) dx (6)

Substitution of the equations of motion into (6) gives (see Appendix A.1)

d
dt

E(t)=
−1

V Re�

∫
V
(∇Ui)2 dx+

1
V

∫
V
U · e1 dx (7)

The viscous term is always negative so that viscosity acts as an energy sink. The term
involving the applied pressure gradient must be positive (unless the bulk velocity suddenly
becomes negative) and acts as the sole energy source for the system. Non-linear convective
terms and pressure–velocity interactions which act only to redistribute the kinetic energy (see
Appendix A.1), vanish in the net energy balance given by (7).

2.2. Karhunen-Lo�eve decomposition

In this paper the Karhunen-Lo�eve or proper orthogonal decomposition (POD) procedure is
applied to the turbulent channel �ow described above. Only the rudiments of the method are
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included here and descriptions of greater detail can be found elsewhere [14–16]. Since the
velocity �eld is periodic in the x1 and x3 directions, a K-L analysis can be performed on
u(x2; m; n) which is the Fourier transform of U in the horizontal (x1 and x3) plane, where
m and n correspond to the streamwise and spanwise wavenumber indices, respectively. The
analysis reported in this paper was performed without removing the mean velocity �eld. The
empirical eigenfunctions, �, and eigenvalues, �, are determined from the equation:

∫ 1

−1
�ij(x2; x′2; m; n) j(x′2; m; n) dx′2 = �(m; n) i(x2); i; j=1; 2; 3 (8)

where �ij(x2; x′2; m; n) is the two-point spatial correlation tensor or covariance matrix formed
from

�ij(x2; x′2; m; n)= 〈ui(x2; m; n) �uj(x′2; m; n)〉 (9)

where the overbar denotes complex conjugation, and expectation is taken over all realizations
and �ow symmetries [16]. The three-dimensional eigenfunction is a complex valued vector
�eld which can be written as

Mk(x1; x2; x3)=M(m;n; q)(x1; x2; x3)=�q(x2; m; n)e2�imx1=L1e2�inx3=L3 (10)

We use the triplet k=(m; n; q) to completely specify the eigenfunction Mk.
It is important to note several important features of the eigenmodes which are useful for

the analysis undertaken here. First, since the eigenfunctions are derived from physical �ow
�elds, they are themselves �ow �elds and retain the incompressibility property, ∇ · Mk=0.
In addition, they satisfy the no slip boundary condition, Mk=0 at x2 = ± 1. Secondly, it
follows from the Hermitian property of �ij(x2; x′2; m; n) that the eigenfunctions can be made
orthonormal:

1
V

∫
V
Mk · �Ml dx= �kl (11)

and it can be further shown that the eigenvalues are real and non-negative. Once obtained,
the velocity �eld can be represented as a sum of the eigenfunctions as follows:

U(x; t)=
∑
k
ak(t)Mk(x) (12)

where the K-L coe�cients are obtained from

ak(t)=
1
V

∫
V
U(x; t) · �M(x)k dx (13)

The eigenmodes chosen in this way converge optimally in the mean square sense to the
original data [14, 16].
In previous work [4, 5, 9] it was found useful to separate the KL modes into groups for

which some physical signi�cance could be attached. The so-called net �ux modes are those
with zero streamwise and spanwise wavenumbers. As such, they represent the modes which
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correspond to the instantaneous horizontally averaged velocity pro�le and are the only modes
which can represent the mass �ux through the channel. The most energetic mode in this
group which very closely approximates the average �ow �eld and composes the bulk of the
energy in the �ow is referred to as the mother mode. Modes with spanwise dependence
but no streamwise dependence are referred to as roll modes. The most energetic modes in
this group (see WHS) have a spanwise spacing of about 100�=u�, the length scale associated
with the so-called boundary layer streaky structures [1, 17]. Modes with streamwise depen-
dence are referred to as propagating modes since members of the group appear to have
wave-like character [4, 5]. The more energetic propagating modes appear similar in form to
inclined streamwise vortices which are often found in the turbulent boundary layer [18, 19].
Visualizations of these modes and their relationship to experimental observations are found
in WHS.

3. THE ENERGY TRANSPORT EQUATIONS FOR A TURBULENT FLOW
USING KL MODES AS A BASIS

The principal goal of this work is to develop a method of tracking the �ow of energy between
modes of a turbulent system by taking advantage of the properties of the KL modes discussed
above. To proceed, an expression for the time rate of change of the energy for each individual
KL mode is required. Using the orthogonality properties of the eigenmodes, it can be shown
(see Appendix A.2) that the energy of the system can be expressed in terms of the time
dependent coe�cients ak(t) as follows:

E(t)=
1
2V

∫
V
U ·U dx=∑

k

1
2
ak(t) �ak(t)=

∑
k
Ek(t) (14)

Here the energy in any individual KL mode is de�ned as

Ek(t)=
1
2
ak(t) �ak(t) (15)

and its time rate of change can be written:

d
dt

Ek=
1
2

(
�ak(t)

d
dt

ak(t)
)

(16)

where it is understood that since the energy is real, the complex conjugate must be added to
the above expression. The operation of adding the complex conjugate to insure positivity will
be implicit in the derivations to follow.
In addition to quantity of energy, the distribution of energy is also important. The portion

of energy in each mode can be calculated by the equation pk(t)=Ek(t)=
∑

k′ E
k′(t), so that

pk(t) is a probability. Finally a representational entropy, S(t), is calculated which measures
the degree to which the energy is distributed over the modes:

S(t)=−∑pk(t) ln(pk(t)) (17)

A small value of S indicates that few modes contain the bulk of the energy while a large
value of S indicates that the energy is distributed over many modes. While the �ow can
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be represented by any orthonormal basis set, it has been shown by Sirovich [16] that the
empirical eigenfunctions are the basis which minimizes the representational entropy for the
time averaged probabilities.
The expression for time rate of change of the coe�cients, which is determined by intro-

ducing expansion (12) into the equations of motion (1), multiplying by �Mk, and integrating
over the volume, is given by

d
dt

ak(t)= −∑
k′

∑
k′′

ak
′
ak

′′
�kk

′k′′ +
1
R�

∑
k′

ak
′
	kk

′
+ 
k (18)

where

�kk
′k′′ =

1
V

∫
V

�Mk · (Mk′ ·∇Mk′′) dx (19)

	kk
′
=
1
V

∫
V

�Mk ·∇2Mk
′
dx (20)


k =
1
V

∫
V

�Mk · e1 dx (21)

Introducing (18) into (16) yields an expression for the time rate of change of the energy as
follows:

d
dt

Ek(t)=
1
2

(
− �ak∑

k′

∑
k′′

ak
′
ak

′′
�kk

′k′′ + �ak
1
R�

∑
k′

ak
′
	kk

′
+ �ak
k

)
(22)

The coe�cients �kk
′k′′ , 	kk

′
, and 
k are time independent and can be computed, once and for

all, using the known KL eigenfunctions. As noted earlier, since the KL eigenfunctions satisfy
continuity and the boundary conditions, the expression for the evolution of the energy derived
from them does not involve pressure terms.
We now consider the signi�cance of the individual terms in the energy balance. The energy

input to any KL mode from the applied pressure gradient is given by the term involving 
k.
Since each eigenfunction is a product of complex exponentials in the streamwise and spanwise
directions it follows that 
k will be zero for all modes other than the net �ux modes for which
m= n=0. The energy input to the system can then be calculated as follows:

d
dt

E(t)input =
1
V

∫
V
U · e1 dx=

∑
k

(
d
dt

Ek(t)
)

k
=
1
2
∑
q
�a(0;0; q)
(0;0; q) (23)

where the term ((d=dt)Ek(t))
k represents the change in the term Ek(t) due to the term 
k.
The system can therefore receive energy only through the pressure gradient acting on the net
�ux modes. The average time rate of change of energy Ck due to this term is de�ned as
follows:

Ck=
1
T

∫ T

0
�ak(t)
k dt= 〈 �ak〉
k (24)
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Each KL mode loses energy to viscosity as embodied in the term involving 	kk
′
. The energy

loss of the system can therefore be expressed by

d
dt

E(t)output =
1

V Re�

∫
V
U · ∇2U dx

=
1

Re�

∑
k

∑
k′

(
d
dt

Ek(t)
)
	kk′
=

1
2R�

(∑
k

∑
k′
�ak(t)ak

′
(t)	kk

′
)

(25)

where ((d=dt)Ek(t))	kk′ represents the change in Ek due to the 	kk
′
term. The mean rate at

which each mode loses energy to viscosity is given by

Lk=
〈(

d
dt

Ek(t)
)
	

〉
=

1
2Re�

(∑
k′

〈 �akak′〉	kk′
)

(26)

Since the KL coe�cients are uncorrelated [16], that is 〈 �akak′〉= �k�kk
′
, it follows that

Lk=
1

2Re�
�k	kk (27)

Since it can be shown that 	kk is real and negative (see Appendix A.2) and that the eigenvalues
must always be positive, the expected result that viscosity can only drain energy from each
mode is derived.
The term involving �kk

′k′′ , which originates from the non-linear convective term in the
original equations of motion, represents the transport of energy between modes due to the
so-called triad interactions. It is important to note that these terms will contribute no net
energy to the system. The nature of these terms arises from the fact that �kk

′k′′ will be zero
unless m′ + m′′ − m=0 and n′ + n′′ − n=0 (see Appendix A.2). When these conditions are
met, the modes are said to form a triad. The rate of energy increase to mode k by the triad
(k;k′;k′′) can be written as

(
d
dt

Ek(t)
)
�kk′k′′

=
1
2
(− �akak′ak′′�kk′k′′) (28)

Important symmetry properties associated with the triad terms can be derived by �rst noting
that if kk′k′′ forms a triad, then k′′ �k′k also forms a triad, where �k′ refers to the triplet
(−m′;−n′; q′) . It follows (see Appendix A.2) that

(
d
dt

Ek(t)
)
�kk′k′′

=−
(
d
dt

Ek
′′
(t)
)
�k′′ �k′k

(29)

This relation implies that, if the energy in mode k is increasing due to a given triad, the
mode k′′ loses energy at the same rate. Thus, for any given triad, k and k′′ can always be
identi�ed as either sources or sinks, and the given intermediate mode k′ which gains no net
energy from this triad during the interaction, is referred to as a catalyst. The average rate at
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which energy is transported to or from mode k by a given triad is de�ned by

T kk
′k′′ =

1
2
(〈− �akak′ak′′〉�kk′k′′) (30)

If T kk
′k′′ is positive, then this triad represents energy �owing from mode k′′ to mode k.

It is convenient in what follows to de�ne primary triads as those in which the mother mode
(k=(0; 0; 1)) is involved. This is because the mother mode, which contains approximately
90% of the �ow energy, receives the bulk of its energy from the mean pressure gradient and
in turn acts as the source for the most energetic triads. Triads not involving the mother mode
will be referred to as secondary triads.
We can simplify the analysis of the �ow energetics by de�ning energy transport among

groups of modes. As an example, the rate of energy �ow from the net �ux (NF) modes to
the roll (R) modes due to triad interactions is calculated by adding the energy �ow among
all triads where the net �ux modes are the k′′ modes and the roll modes are the k modes as
follows: (

d
dt

E(t)
)
NF→R

=
−1
2
∑
k

m=0n�=0

∑
k′

∑
k′′

m′′ = 0n′′=0

�ak(t)ak
′
(t)ak

′′
(t)�kk

′k′′ (31)

In a similar manner the triad interactions between net �ux and propagating modes and between
roll and propagating modes are also computed as follows:(

d
dt

E(t)
)
NF→P

=
−1
2
∑
k

m�=0

∑
k′

∑
k′′

m′′ = 0n′′=0

�ak(t)ak
′
(t)ak

′′
(t)�kk

′k′′ (32)

(
d
dt

E(t)
)
R→P

=
−1
2
∑
k

m�=0

∑
k′

∑
k′′

m′′ = 0n′′ �=0

�ak(t)ak
′
(t)ak

′′
(t)�kk

′k′′ (33)

4. RESULTS FOR THE TRANSPORT TERMS IN THE ENERGY EQUATION

Turbulence in a minimal channel, as de�ned in Section 2, was simulated over a time period
t+ =4000. The turbulence statistics, described in detail in WHS, are found to be in good
agreement with the earlier results of Jimenez and Moin [10]. Realizations of the �ow are then
used to compute the KL modes as described earlier. The most energetic KL mode is found to
be the mother mode which approximates the time averaged mean velocity pro�le. The next
two most energetic modes are roll modes which account for 23:8% of the remaining turbulent
energy, that is 23:8% of the energy not accounted for by the mother mode.
The time-dependent coe�cients ak(t) are computed by projecting the known KL eigenfunc-

tions onto a second channel �ow simulation. These coe�cients are computed on the �y—
simultaneously with the simulation—so as to avoid having to store further three-dimensional
�ow �eld realizations which were needed originally to compute the KL eigenfunctions. Time-
dependent coe�cients are computed and stored for 3025 modes which represent about 96:4%
of the �ow energy outside the mother mode or 99:64% of the total energy.
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Table I. Energy transfer rate of the 10 most energetic triads in the minimal channel
�ow involving energy exchange with the mother mode.

Sink mode Catalyst mode Source mode
Index (m; n; q) (m′; n′; q′) (m′′; n′′; q′′) T kk

′k′′

1 (0; 1; 2) (0; 1; 2) (0; 0; 1) 3.12809
2 (0; 1; 1) (0; 1; 1) (0; 0; 1) 2.88146
3 (0; 2; 2) (0; 2; 2) (0; 0; 1) 0.37905
4 (0; 2; 1) (0; 2; 1) (0; 0; 1) 0.36726
5 (1; 1; 1) (1; 1; 1) (0; 0; 1) 0.35512
6 (1; 1; 2) (1; 1; 2) (0; 0; 1) 0.34488
7 (0; 1; 3) (0; 1; 3) (0; 0; 1) 0.31349
8 (0; 1; 4) (0; 1; 4) (0; 0; 1) 0.27835
9 (1; 2; 2) (1; 2; 2) (0; 0; 1) 0.21905
10 (1; 2; 1) (1; 2; 1) (0; 0; 1) 0.18489

The KL coe�cients computed as described above are the exact coe�cients. Once they have
been obtained, their time rate of change can be computed using a centre di�erencing scheme.
On the other hand, the time rate of change of the coe�cients can also be computed using
(18)—that is, they are calculated indirectly from the Navier–Stokes equations. The indirectly
computed time rate of change of the coe�cients will di�er from the exact rate of change
since the source terms on the right-hand side of the governing equations are computed from
the truncated set (3025 modes) of eigenmodes. We have compared the indirectly obtained
time derivatives to the exact time derivatives for a representative set of coe�cients and found
that the rms di�erence between the two to be negligibly small. This gives us con�dence that
the set of coe�cients and eigenfunctions used in this study are large enough to su�ciently
represent the �ow, and that the triad, viscous dissipation, and source terms are calculated
correctly.

4.1. Computation of the dominant triads

Using the methods described above the energy transport due to selected triad interactions have
been computed. T kk

′k′′ is used as a measure of the relative strength of each triad. The most
energetic primary triads (triads involving the mother mode) have been ranked from largest to
smallest in Table I. It is evident that the mother mode (the (0; 0; 1) mode) acts as a source in
the most energetic primary triads. In addition, the sink modes also act as their own catalysts.
The two most energetic primary triads, whose energy transport rates are an order of magnitude
larger than any other triads, involve energy transfer from the mother mode to the dominant
roll modes. These two roll modes also rank as the most energetic KL modes (see WHS),
other than the mother mode, in the sense that they have the largest mean square energy.
The remaining sink modes listed in Table I also are among the most energetic KL modes.
In examining the rate of transport (T kk

′k′′) for many triads, it appears that although many
modes tend to receive the majority of their energy from modes other than the mother mode,
the largest single source of energy for most modes is the mother mode with the sink acting
as its own catalyst. The instantaneous rate of transport due to a triad as de�ned in (28) for
the �rst triad listed in Table I is shown in Figure 1. We note that in this case, the energy
�ow is always positive, indicating that the energy always �ows from the mother mode to
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Figure 1. Energy transfer from the mother mode to the (0; 1; 2) through the �rst triad.

Table II. Energy transfer rate of the 10 most energetic triads in the minimal
channel �ow not involving the mother mode.

Sink mode Catalyst mode Source mode
Index (m; n; q) (m′; n′; q′) (m′′; n′′; q′′) T kk

′k′′

1 (1; 1; 2) (1; 0; 4) (0; 1; 2) 0.16340
2 (0; 2; 2) (0; 1; 2) (0; 1; 2) 0.15839
3 (1; 1; 1) (1; 0; 4) (0; 1; 1) 0.13536
4 (0; 0; 3) (0; 1; 1) (0; 1; 1) 0.12994
5 (1; 1; 1) (1; 0; 2) (0; 1; 2) 0.11070
6 (0; 2; 1) (0; 1; 1) (0; 1; 2) 0.10179
7 (0; 2; 1) (0; 1; 2) (0; 1; 1) 0.10004
8 (0; 2; 2) (0; 1; 1) (0; 1; 1) 0.09499
9 (0; 0; 3) (0; 1; 2) (0; 1; 2) 0.09081
10 (1; 1; 2) (1; 0; 2) (0; 1; 1) 0.08699

the (0; 1; 2) mode. In general, however, it is always possible for the transport rates to change
sign, indicating that a mode may switch chaotically from being a source to a sink.
A list of the most energetic secondary triads, which are those not involving the mother

mode, are listed in Table II. Is is evident that roll modes are the sources for the most
important secondary triads. Results from WHS show these roll modes to be signi�cantly
more energetic than any modes other the mother mode, and the fact that they are able to
drive all of the dominant secondary triads is another con�rmation of their importance in the
dynamics. The most energetic secondary triad is associated with transport from the roll mode
(0; 1; 2) to the propagating mode (1; 1; 2). In this case, while the average rate of transport
associated with this triad is positive, Figure 2 shows that the transport actually goes the other
way for brief time periods.
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Figure 2. Energy transfer from (0; 1; 2) mode to (1; 1; 2) mode through most energetic secondary triad.

4.2. Group mode dynamics during a turbulent burst

An important observation, made in WHS, is that turbulent channel �ow appears to undergo
intermittent bursts of activity. Before such a burst, the mass �ux and roll mode energy are
seen to increase and the entropy reaches a minimum, indicating that relatively few modes
carry most of the turbulent energy. One can view this part of the cycle as a tendency toward
�ow relaminarization. This is then followed abruptly by a rapid decrease in roll mode energy
and mass �ux, and an increase in propagating mode energy and entropy. We refer to these
events as entropy events. In WHS the dynamical relationships between roll, propagating, and
net �ux modes could not be determined in detail since in that work triad transport rates were
never computed. As is shown below, computation of the triad transport terms during these
entropy events greatly clari�es our view of the dynamics.
The entropy events correspond to the local peaks in bulk velocity at times t+ � 1000 and

t+ � 4000, which can be readily identi�ed in Figure 3 along with the associated dips in
entropy seen in Figure 4. We interpret these events as indicating that the �ow is undergoing
a weak relaminarization as the energy tends to be concentrated in fewer modes. A sharp rise
in entropy is seen to follow a corresponding decrease in bulk velocity. One of the prime
objectives of the present work is to describe the energy dynamics of such events, which is
most easily done by considering the group dynamics.
To obtain an overall view of the dynamics during these entropy events, we sum the lin-

ear and non-linear interactions over the various mode groups—net �ux modes, roll modes,
and propagating modes de�ned in (31)–(33). The details of the triad interactions occur-
ring among the various mode groups during a typical entropy event (800¡t+¡1400) are
given in Figures 5–8. It is useful in the following discussion to divide the event into three
periods; 800¡t+¡1000 (period one), 1000¡t+¡1150 (period two), and 800¡t+¡1400
(period three). During the �rst period, energy is transported almost exclusively from net
�ux modes to roll modes. For these interactions, the roll modes act as their own catalyst
to draw energy from the mother mode through the primary triads. As a result, roll mode
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Figure 3. Bulk velocity of the minimal channel.
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Figure 4. Representational entropy of minimal channel �ow, S(t).

energy increases rapidly while propagating mode energy remains stagnant as seen in Figures 5
and 6.
During the second period, the rate of energy transfer from the roll modes to the propagating

modes shows a sharp increase. This transport results in a rapid rise in propagating mode energy
as is evident in Figure 5. Towards the end of this period, the transport from net �ux modes
to roll modes decreases which results in a predictable decrease in roll mode energy. During
the �nal period, energy is pumped into the propagating modes directly by the net �ux modes
as well as by the roll modes. This results in a rapid rise in propagating mode energy which
corresponds to a dramatic increase in representational entropy seen in Figure 8. In summary,
during the early stages of the event, the net �ux modes drive the roll modes through primary
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Figure 5. Energy in the mode groups. The solid line represents the energy in the roll modes and the
dots represent the energy in the propagating modes.

Figure 6. Energy transfer rate among mode groups. The solid line represents the transfer rate from the
net �ux modes to the roll modes as described in Equation (32). The dots represent net �ux modes to

propagating modes and the open circles represent roll modes to propagating modes.

triads—then secondary triads act to transfer energy from the roll modes to the propagating
modes, and �nally the net �ux modes switch from driving roll modes to driving propagating
modes.
It is important to note that in previous work it was not possible to determine with any

certainty what processes were actually causing this bursting activity. The importance of the
method described here is that we can not only determine which modes are interacting with
each other, but also the direction of energy transport. As we describe below, this information
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Figure 8. Representational entropy during entropy event.

may be of considerable importance in developing turbulence modi�cation strategies and in
enhancing basic understanding of the mechanism by which wall turbulence sustains itself.

5. CONCLUSIONS AND FUTURE APPLICATIONS

It has been shown that important information about the dynamics of wall bounded turbulence
can be had by performing a dynamic energy balance analysis. The analysis is performed by
representing the turbulent �eld as a sum of KL modes, each of which satis�es the boundary
conditions and conserves mass. These properties simplify the resulting analysis by eliminating
the pressure from the energy balance equations, along with other simpli�cations. The balance
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equations show that all the energy in the �ow must come from the applied pressure gradient
acting on the net �ux modes with most of the energy being transferred through the mother
mode. All other modes receive energy through triad interactions which are important in under-
standing the dynamics. Each triad interaction determines the rate of energy transport between
source and sink modes via a catalyst. Ultimately energy leaves the system through viscous
dissipation.
To illustrate the e�ectiveness of the method, a detailed analysis of the triad interactions

occurring during a turbulent burst was performed. The analysis revealed that these events are
initiated by a transport of energy from the mean �ow to the roll modes. As the roll modes
increase in energy, they in turn transport energy to the propagating modes. The propagating
modes then begin to receive energy directly from the mean �ow and their energy builds as
roll mode energy decreases.
The KL energy �ow analysis can determine both the rate of energy transport between

modes and, more importantly, the direction of energy �ow. The directional information may
be important in determining strategies for interfering with the turbulence, with the goal of
reducing drag. For example, we have determined that during a turbulent burst, when drag
increases, the energy �ows �rst from the mean �ow to the roll modes and then to the smaller
scale turbulence represented by the propagating modes. This suggests the possibility that the
roll modes may undergo an instability which allows the turbulence to cascade down to smaller
scales. If this is the case, then stabilizing the roll modes may be one way of reducing drag.
In fact, this seems to be true in the case of the phenomena associated with drag reduction
by polymer addition. In this case, polymer addition reduces the bursting rate and increases
roll mode energy and roll size [20–22]. Our analysis also indicates that a burst begins �rst
with an energy exchange between the mean �ow and the roll modes. This raises the question:
By what physical mechanism do the roll modes extract energy from the mean? Furthermore,
in a typical KL analysis, the modes are ranked according to their energy, not necessarily
in order of their importance in the dynamics. The KL energy dynamics analysis developed
above, however, ranks the most important non-linear interactions through the ranking of the
triad transfer rates. This ranking may provide important information to those concerned with
developing low-order dynamical models of such �ows. For example, one may choose to
include only those modes which appear in the most energetic primary and secondary triads.
Pursuit of these ideas remains a goal for future work in this area.
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APPENDIX A

A.1. Basic energy equations
The kinetic energy in the channel can be calculated by

E(t)=
1
2V

∫
V
U(x; t) ·U(x; t) dx (A1)
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so the rate of change of the energy in the system becomes

d
dt

E(t)=
1
V

∫
V
U(x; t) · @

@t
U(x; t) dx (A2)

By using the Navier–Stokes equations, the time rate of change of the energy can be written:

d
dt

E(t) =
−1
V

∫
V
U · (U · ∇U) dx − 1

V

∫
V
U · ∇p dx (A3)

+
1

V Re�

∫
V
U · ∇2U dx+

1
V

∫
V
U · e1 dx (A4)

An examination of the �uctuating pressure term shows

∫
V
U · ∇p dx=

∫
V
∇ · (pU) dx −

∫
V
p(∇ ·U) dx

=
∫
S
n · (pU) dS − 0=0 (A5)

where the surface integral is zero due to the periodic boundary conditions. A similar
examination of the convection term shows

−
∫
V
U · (U · ∇U) dx=−1

2

∫
V
∇ · ((U ·U)U) dx+ 1

2

∫
V
(U ·U)(∇ ·U) dx

=−1
2

∫
S
n · ((U ·U)U) dS=0 (A6)

Thus the rate of change of energy is

d
dt

E(t)=
1

V Re�

∫
V
U · ∇2U dx+

1
V

∫
V
U · e1 dx (A7)

By writing U in subscript notation, Ui, and using Green’s �rst identity, the viscous term can
be rewritten as ∫

V
Ui∇2Ui dx=

∫
S
Ui

@Ui

@n
dS −

∫
V
∇Ui∇Ui dx (A8)

where the surface integral is zero because of the homogeneous and periodic boundary condi-
tions and the volume integral on the right side of the equation is positive because the integrand
is always greater than or equal to zero. It follows, as expected, that viscosity can only act to
drain energy from the system.
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A.2. Energy transfer among K-L modes

The dynamic equation for each mode is written by substituting the expansion given by
Equation (12) into the Navier–Stokes equations producing

∑
k′′′

d
dt

ak
′′′
(t)�k

′′′
=−

(∑
k′

ak
′
Mk

′
)

· ∇
(∑
k′′

ak
′′
Mk

′′
)
−∇p

+
1
R�

∇2
(∑
k′

ak
′
Mk

′
)
+ e1 (A9)

A set of coupled ordinary di�erential equations for the coe�cients ak(t) is written by multi-
plying this equation by �Mk and integrating over the entire domain,

d
dt

ak(t) =−∑
k′

∑
k′′

ak
′
ak

′′ 1
V

∫
V

�Mk · (Mk′ ·∇Mk′′) dx − 1
V

∫
V

�Mk · ∇p dx

+
1

VR�

∑
k′

ak
′
∫
V

�Mk · ∇2Mk
′
dx+

1
V

∫
V

�Mk · e1 dx

=−∑
k′

∑
k′′

ak
′
ak

′′
�kk

′k′′ +
1
R�

∑
k′

ak
′
	kk

′
+ 
k (A10)

As was shown previously, the integral involving the �uctuating pressure terms is zero due
to the periodicity of the pressure �eld and the eigenfunctions, along with the fact that the
eigenfunctions are incompressible and zero along the surfaces x2 = 1 and −1. The time rate
of change of energy for each mode can then be computed from

d
dt

Ek(t) =
1
2

(
�ak(t)

d
dt

ak(t)
)

=
1
2

(
− �ak∑

k′

∑
k′′

ak
′
ak

′′
�kk

′k′′ + �ak
1
R�

∑
k′

ak
′
	kk

′
+ �ak
k

)
(A11)

Here we examine the viscous term in greater detail. The 	kk
′
term can be written, using

the expansion given by Equation (10):

	kk
′
=
1
V

∫
V

�Mk · ∇2Mk
′
dx

=
−4�2
V

(
m′2

L21
+

n′2

L23

)(∫
V

�Mk ·Mk′ dx
)
+
1
V

∫
V

�Mk · d
2

dx22
Mk

′
dx
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=
∫ L1

0
e
2�i(m′−m)x1

L1 dx1
∫ L3

0
e
2�i(n′−n)x3

L1 dx3

(∫ 1

−1

−4�2
V

(
m′2

L21
+

n′2

L23

)
��q ·�q′ dx2 +

1
V

∫ 1

−1
��q · d

2

dx22
�q′ dx2

)
(A12)

By examining the integral in the x1 direction and the integral in the x3 direction, we can see
that these are zero unless m=m′ and n= n′, i.e. a mode only has viscous interaction with
another mode with the same wave number. The last line of the equations shows two integrals
in the x2 direction. In the case k=k′, the �rst of these integrals will be real and non-positive
since the eigenfunctions are orthogonal. In this case, the second integral can be rewritten as

∫ 1

−1
��q · d

2

dx22
�q dx2 = ��q · d

dx2
�q

∣∣∣∣∣
1

−1
−
∫ 1

−1

d
dx2

�q · d
dx2

�q dx2 (A13)

Because the �rst term in (A13) is zero due to the boundary conditions, and the integrand
of the second term is real and negative, the integral on the left is real and negative, so the
value of 	kk must also be real and negative. It therefore follows, as expected, that viscosity
can only act to drain energy from a given mode.
Energy moves from the net �ux modes to the higher order modes through the convection

terms which we represent through the terms �kk
′k′′ . While the 	kk

′
terms produced a complex

exponential with m′ − m and n′ − n in the numerator, the integral for the �kk
′k′′ terms will

produce a complex exponential with m′+m′′ −m and n′+ n′′ − n in the numerator. Just as in
the 	kk

′
terms, the �kk

′k′′ terms will be zero unless m′, m′′ and −m add to zero as well as n′,
n′′ and −n. When these two conditions are met, the modes are said to form a triad. While
convection can have no e�ect on the net energy change of the system, it can have an e�ect
on the energy distribution among modes—that is, it can move energy among the K-L modes.
The rate of energy transport due to a triad interaction can be written:(

d
dt

Ek(t)
)
�kk′k′′

=
1
2
(− �akak′ak′′�kk′k′′) (A14)

In taking a closer look at the triads, we note that if kk′k′′ forms a triad in the energy equation
for the k mode, then k′′ �k′k forms a triad in the energy equation for the k′′ mode ( �k

′
refers

to the triplet (−m′;−n′; q)). This rate of energy change can be written as(
d
dt

Ek
′′
(t)
)
�k′′ �k′k

=
1
2
(− �ak′′a �k′ak�k′′ �k′k) (A15)

Because this derivative is real, it is equal to its own complex conjugate. In addition, because
the �ow is real, the coe�cients have the property ak = �a�k , so the time derivative can be
rewritten as (

d
dt

Ek
′′
(t)
)
�k′′ �k′k

=
1
2
(− �ak′′a �k′ak�k′′ �k′k)= 1

2
(− �akak′ak′′ ��k′′ �k′k) (A16)
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We compare the terms �kk
′k′′ and ��k

′′ �k′k by examining the equation

∫
V
∇ · (( �Mk · Mk′′)Mk′) dx=

∫
V
(∇ · Mk′)( �Mk · Mk′′) dx

+
∫
V

�Mk · (Mk′ ·∇Mk′′) dx+
∫
V
Mk

′′ · (Mk′ ·∇ �Mk) dx

The integral on the left can be converted to a surface integral which is zero due to the
periodic and no slip boundary conditions. The �rst integral on the right is zero due to the
incompressibility of the eigenfunctions. This leaves the result∫

D

�Mk · (Mk′ ·∇Mk′′) dx= −
∫
D
Mk

′′ · (Mk′ ·∇ �Mk) dx or �kk
′k′′ =− ��k′′ �k′k

which shows that the energy change in the modes k and k′ due to these triads can be
written as (

d
dt

Ek(t)
)
�kk′k′′

=−
(
d
dt

Ek
′′
(t)
)
�k′′ �k′k

(A17)

Thus the energy which �ows out of the mode k through this triad �ows into the k′′ term and
vice versa. We conclude from this analysis that we can determine the rate of energy change
for each mode, and we can determine where the energy is coming from and going to.
The magnitude of the triad is measured by the time average of the energy �ow,

T kk
′k′′ =

1
2T

(∫ T

0
− �akak′ak′′�kk′k′′ dt

)
=
1
2
(〈− �akak′ak′′〉�kk′k′′) (A18)

If T kk
′k′′ is greater than zero, then the mean e�ect of this triad is to move energy from the

k′′ mode to the k mode. In this case we report the k′′ mode to be the source mode and the
k mode to be the sink mode. If T kk

′k′′ is negative, k is the source mode and k′′ is the sink
mode. No energy comes from or goes to the k′ term through this triad meaning that it acts
as a catalyst. The total change of energy from the triads can be calculated by a sum over
the terms given by T kk

′k′′ . Because we have shown that for each triad, there is exactly one
triad of equal magnitude and opposite sign, the sum over these triads is zero. This �nding is
in line with the fact that convection does not produce or consume energy.
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